Design e aplicações do sistema de comércio algorítmico


Arquitetura do sistema de comércio algorítmico.


Anteriormente, neste blog, escrevi sobre a arquitetura conceitual de um sistema de negociação algorítmico inteligente, bem como os requisitos funcionais e não funcionais de um sistema de negociação algorítmica de produção. Desde então, criei uma arquitetura de sistema que, acredito, poderia satisfazer esses requisitos arquitetônicos. Nesta publicação, descreverei a arquitetura seguindo as diretrizes dos padrões ISO / IEC / IEEE 42018 e padrão de descrição da arquitetura de engenharia de software. De acordo com este padrão, uma descrição de arquitetura deve:


Contém várias visualizações arquitetônicas padronizadas (por exemplo, em UML) e Mantenha a rastreabilidade entre decisões de design e requisitos arquitetônicos.


Definição de arquitetura de software.


Ainda não há consenso quanto ao que é uma arquitetura do sistema. No contexto deste artigo, é definido como a infra-estrutura dentro da qual os componentes do aplicativo que satisfazem os requisitos funcionais podem ser especificados, implantados e executados. Os requisitos funcionais são as funções esperadas do sistema e seus componentes. Os requisitos não funcionais são medidas através das quais a qualidade do sistema pode ser medida.


Um sistema que satisfaça plenamente seus requisitos funcionais ainda pode não atender às expectativas se os requisitos não funcionais forem deixados insatisfeitos. Para ilustrar este conceito, considere o seguinte cenário: um sistema de negociação algorítmico que você acabou de comprar / construir faz excelentes decisões de negociação, mas é completamente inoperacional com os sistemas de gestão e contabilidade de risco das organizações. Esse sistema atenderia às suas expectativas?


Arquitetura conceitual.


Uma visão conceitual descreve conceitos e mecanismos de alto nível que existem no sistema no mais alto nível de granularidade. Nesse nível, o sistema de negociação algorítmica segue uma arquitetura orientada a eventos (EDA) dividida em quatro camadas e dois aspectos arquitetônicos. Para cada camada e referência de aspecto arquiteturas e padrões são usados. Padrões arquitetônicos são estruturas comprovadas e genéricas para alcançar requisitos específicos. Os aspectos arquitetônicos são preocupações transversais que abrangem múltiplos componentes.


Arquitetura orientada a eventos - uma arquitetura que produz, detecta, consome e reage a eventos. Os eventos incluem movimentos do mercado em tempo real, eventos ou tendências complexas e eventos comerciais, e. enviando um pedido.


Este diagrama ilustra a arquitetura conceitual do sistema de negociação algorítmica.


Arquiteturas de referência.


Para usar uma analogia, uma arquitetura de referência é semelhante aos planos para uma parede de suporte de carga. Esta impressão azul pode ser reutilizada para projetos de construção múltipla independentemente do edifício que está sendo construído, pois satisfaz um conjunto de requisitos comuns. Da mesma forma, uma arquitetura de referência define um modelo contendo estruturas genéricas e mecanismos que podem ser usados ​​para construir uma arquitetura de software concreta que satisfaça requisitos específicos. A arquitetura para o sistema de negociação algorítmica usa uma arquitetura baseada em espaço (SBA) e um controlador de exibição de modelo (MVC) como referências. São também utilizadas boas práticas, como o armazenamento de dados operacionais (ODS), o padrão de transformação e carregamento de extratos (ETL) e um data warehouse (DW).


Controle de exibição de modelo - um padrão que separa a representação de informações da interação do usuário com ela. Arquitetura baseada em espaço - especifica uma infra-estrutura onde as unidades de processamento acopladas vagamente interagem entre si através de uma memória associativa compartilhada chamada espaço (mostrado abaixo).


Visão estrutural.


A visão estrutural de uma arquitetura mostra os componentes e subcomponentes do sistema de negociação algorítmica. Ele também mostra como esses componentes são implantados em infra-estrutura física. Os diagramas UML utilizados nesta visão incluem diagramas de componentes e diagramas de implantação. Abaixo está a galeria dos diagramas de implantação do sistema de negociação algorítmico geral e as unidades de processamento na arquitetura de referência SBA, bem como diagramas de componentes relacionados para cada uma das camadas.


Diagrama de componentes de processamento de comerciantes / eventos automatizados Fonte de dados e diagrama de componente de camada de pré-processamento Diagrama de componente de interface de usuário baseado em MVC.


Táticas arquitetônicas.


De acordo com o instituto de engenharia de software, uma tática arquitetônica é um meio de satisfazer um requisito de qualidade, manipulando algum aspecto de um modelo de atributo de qualidade através de decisões de design arquitetônico. Um exemplo simples usado na arquitetura do sistema de negociação algorítmica é 'manipular' um armazenamento de dados operacional (ODS) com um componente de consulta contínua. Este componente analisaria continuamente o ODS para identificar e extrair eventos complexos. As seguintes táticas são usadas na arquitetura:


O padrão do disruptor nas filas de eventos e pedidos Memória compartilhada para as filas de eventos e pedidos Linguagem de consulta contínua (CQL) na filtragem de dados ODS com o padrão de design do filtro em dados recebidos Algoritmos de evitação de congestionamentos em todas as conexões de entrada e saída Gerenciamento de filas ativas (AQM ) e notificação de congestionamento explícito Recursos de computação de mercadorias com capacidade de atualização (escalável) Redundância ativa para todos os pontos de falha únicos Indicação e estruturas de persistência otimizadas no ODS Programe backup de dados regulares e scripts de limpeza para ODS Histórico de transações em todos os bancos de dados Súmrios para todos Ordens para detectar falhas Anotar eventos com timestamps para ignorar eventos "obsoletos". Regras de validação de pedidos, por exemplo, quantidades de comércio máximo Componentes de comerciante automatizado usam um banco de dados em memória para análise Autenticação em dois estágios para interfaces de usuário conectando-se à ATs Criptografia em interfaces de usuário e conexões ao padrão de design ATs Observer para que o MVC gerencie visualizações.


A lista acima é apenas algumas decisões de design que identifiquei durante o projeto da arquitetura. Não é uma lista completa de táticas. À medida que o sistema está sendo desenvolvido, táticas adicionais devem ser empregadas em múltiplos níveis de granularidade para atender aos requisitos funcionais e não funcionais. Abaixo estão três diagramas que descrevem o padrão de design do disruptor, o padrão de design do filtro e o componente de consulta contínua.


Visão comportamental.


Essa visão de uma arquitetura mostra como os componentes e camadas devem interagir um com o outro. Isso é útil ao criar cenários para testar projetos de arquitetura e para entender o sistema de ponta a ponta. Essa visão consiste em diagramas de seqüência e diagramas de atividades. Diagramas de atividades que mostram o processo interno do sistema de negociação algorítmica e como os comerciantes devem interagir com o sistema de negociação algorítmica são mostrados abaixo.


Tecnologias e estruturas.


O passo final na concepção de uma arquitetura de software é identificar potenciais tecnologias e estruturas que poderiam ser utilizadas para realizar a arquitetura. Como princípio geral, é melhor aproveitar as tecnologias existentes, desde que satisfaçam adequadamente os requisitos funcionais e não funcionais. Uma estrutura é uma arquitetura de referência realizada, e. JBoss é uma estrutura que realiza a arquitetura de referência JEE. As seguintes tecnologias e frameworks são interessantes e devem ser consideradas na implementação de um sistema de negociação algorítmico:


CUDA - NVidia tem uma série de produtos que suportam modelagem de finanças computacionais de alto desempenho. Pode-se conseguir até 50x melhorias no desempenho ao executar simulações Monte Carlo na GPU em vez da CPU. Rio Apache - Rio é um kit de ferramentas usado para desenvolver sistemas distribuídos. Ele foi usado como uma estrutura para a construção de aplicativos com base no padrão SBA Apache Hadoop - no caso de registro invasivo ser um requisito, então o uso do Hadoop oferece uma solução interessante para o problema dos grandes dados. O Hadoop pode ser implantado em um ambiente em cluster que suporta tecnologias CUDA. AlgoTrader - uma plataforma de negociação algorítmica de código aberto. O AlgoTrader poderia ser implantado no lugar dos componentes do comerciante automatizado. FIX Engine - um aplicativo autônomo que aceita os protocolos do Financial Information Exchange (FIX), incluindo FIX, FAST e FIXatdl.


Embora não seja uma tecnologia ou uma estrutura, os componentes devem ser criados com uma interface de programação de aplicativos (API) para melhorar a interoperabilidade do sistema e seus componentes.


Conclusão.


A arquitetura proposta foi projetada para satisfazer requisitos muito genéricos identificados para sistemas de negociação algorítmica. Geralmente, os sistemas de negociação algorítmica são complicados por três fatores que variam de acordo com cada implementação:


Dependências em sistemas empresariais e de intercâmbio externos Requisitos não funcionais desafiadores e restrições arquitetônicas em evolução.


Por conseguinte, a arquitetura de software proposta deve ser adaptada caso a caso para satisfazer requisitos organizacionais e regulatórios específicos, bem como para superar restrições regionais. A arquitetura do sistema de negociação algorítmica deve ser vista como apenas um ponto de referência para indivíduos e organizações que desejam projetar seus próprios sistemas de negociação algorítmica.


Para uma cópia completa e fontes usadas, baixe uma cópia do meu relatório. Obrigado.


História anterior.


Requisitos do sistema de negociação algorítmica.


Próxima História.


Otimização de portfólio usando otimização de enxertia de partículas.


Excelente visão geral, e um bom começo na arquitetura. Sua conclusão foi adequada, e apontou por que os sistemas de software de negociação algorítmica requerem back-testing e ajustes constantes para mantê-los relevantes. Boa leitura!


1 de fevereiro de 2018.


Quando os dados de commodities ou renda fixa são imprecisos ou lentos em receber, os modelos podem ter dificuldade em calcular especialmente no espaço de um evento Black Swann.


Muito obrigado por este artigo. Estive pensando em AI em finanças desde o final da década de 90 e, finalmente, as tecnologias e as APIs estão comumente disponíveis. Seu artigo e blog são uma ótima ajuda para fazer esses primeiros passos para tornar realidade os sonhos dos anos anteriores. Muito obrigado e boa sorte em seus novos empreendimentos!


Mantenha-me atualizado no seu progresso. Estou muito interessado. Obrigado.


Envie um comentário.


Cancelar resposta.


Siga a Turing Finance.


Turing Finance Mailing List.


Amigos da Turing Finance.


Quantocracy é o melhor agregador de blog de finanças quantitativas com links para novas análises postadas todos os dias.


NMRQL é o fundo hedge quantitativo de que sou parte. Usamos a aprendizagem de máquinas para tentar vencer o mercado.


Sistema de comércio algorítmico: design e aplicações.


Feng Wang Keren Dong Xiaotie Deng Email autor.


Este artigo fornece uma visão geral da pesquisa e desenvolvimento na negociação algorítmica e discute questões-chave envolvidas no esforço atual em sua melhoria, o que seria de grande valor para os comerciantes e os investidores. Alguns sistemas atuais para negociação algorítmica são introduzidos, juntamente com algumas ilustrações de suas funcionalidades. Em seguida, apresentamos a nossa plataforma chamada FiSim e discutimos o seu design geral, bem como alguns resultados experimentais nas comparações da estratégia do usuário.


Preview.


Referências.


Informações sobre direitos autorais.


Autores e afiliações.


Feng Wang 1 Keren Dong 2 Xiaotie Deng 2 Email autor 1. Laboratório chave do estado da engenharia de software Wuhan University Wuhan China 2. Departamento de ciência da computação Universidade da cidade de Hong Kong Kowloon, Hong Kong, China.


Sobre este artigo.


Recomendações personalizadas.


Cite o artigo.


.RIS Papers Reference Manager RefWorks Zotero.


.BIB BibTeX JabRef Mendeley.


Compartilhe o artigo.


Acesso ilimitado ao artigo completo Download instantâneo Inclua o imposto de vendas local, se aplicável.


Cite o artigo.


.RIS Papers Reference Manager RefWorks Zotero.


.BIB BibTeX JabRef Mendeley.


Compartilhe o artigo.


Mais de 10 milhões de documentos científicos ao seu alcance.


Switch Edition.


&cópia de; 2017 Springer International Publishing AG. Parte de Springer Nature.


Fundamentos do comércio algorítmico: conceitos e exemplos.


Um algoritmo é um conjunto específico de instruções claramente definidas destinadas a realizar uma tarefa ou processo.


O comércio algorítmico (negociação automatizada, negociação em caixa preta ou simplesmente algo-trading) é o processo de uso de computadores programados para seguir um conjunto definido de instruções para colocar um comércio para gerar lucros a uma velocidade e freqüência impossíveis para um comerciante humano. Os conjuntos definidos de regras são baseados em tempo, preço, quantidade ou qualquer modelo matemático. Além das oportunidades de lucro para o comerciante, o algo-trading torna os mercados mais líquidos e torna a negociação mais sistemática descartando impactos emocionais humanos nas atividades comerciais. (Para mais, consulte Picking the Right Algorithmic Trading Software.)


Suponha que um comerciante siga esses critérios de comércio simples:


Compre 50 ações de uma ação quando sua média móvel de 50 dias excede a média móvel de 200 dias. Vende ações da ação quando sua média móvel de 50 dias está abaixo da média móvel de 200 dias.


Usando este conjunto de duas instruções simples, é fácil escrever um programa de computador que monitorará automaticamente o preço das ações (e os indicadores de média móvel) e colocará as ordens de compra e venda quando as condições definidas forem atendidas. O comerciante não precisa mais manter um relógio para preços e gráficos ao vivo, ou colocar as ordens manualmente. O sistema de negociação algorítmica automaticamente faz isso para ele, identificando corretamente a oportunidade comercial. (Para mais informações sobre as médias móveis, consulte Médias móveis simples, faça as tendências se destacarem.)


[Se você quiser saber mais sobre as estratégias comprovadas e pontuais que podem eventualmente ser trabalhadas em um sistema de comércio alorítico, confira o Curso de Torneio de Dia de Torneio da Invastopedia Academy. ]


Benefícios da negociação algorítmica.


A Algo-trading oferece os seguintes benefícios:


Negociações executadas com os melhores preços Posicionamento instantâneo e preciso da ordem comercial (com altas chances de execução nos níveis desejados) Negociações cronometradas corretamente e instantaneamente, para evitar mudanças de preços significativas Custos de transação reduzidos (veja o exemplo de falta de implementação abaixo) Verificações automatizadas simultâneas em múltiplos condições de mercado Reduziu o risco de erros manuais na colocação dos negócios Backtest o algoritmo, com base nos dados históricos e em tempo real disponíveis Reduzida a possibilidade de erros por comerciantes humanos com base em fatores emocionais e psicológicos.


A maior parte do dia-a-dia é a negociação de alta freqüência (HFT), que tenta capitalizar a colocação de um grande número de pedidos em velocidades muito rápidas em múltiplos mercados e múltiplos parâmetros de decisão, com base em instruções pré-programadas. (Para obter mais informações sobre o comércio de alta freqüência, consulte Estratégias e Segredos de Empresas de Negociação de Alta Freqüência (HFT).)


O Algo-trading é usado em muitas formas de atividades de comércio e investimento, incluindo:


Investidores de médio a longo prazo ou empresas de compra (fundos de pensão, fundos de investimento, companhias de seguros) que adquirem ações em grandes quantidades, mas não querem influenciar os preços das ações com investimentos discretos e de grande porte. Os comerciantes de curto prazo e os participantes do lado da venda (fabricantes de mercado, especuladores e arbitragentes) se beneficiam da execução comercial automatizada; Além disso, ajudas de algo-trading na criação de liquidez suficiente para os vendedores no mercado. Os comerciantes sistemáticos (seguidores de tendências, comerciantes de pares, hedge funds, etc.) acham muito mais eficiente programar suas regras comerciais e permitir que o programa seja comercializado automaticamente.


O comércio algorítmico proporciona uma abordagem mais sistemática ao comércio ativo do que os métodos baseados na intuição ou instinto do comerciante humano.


Estratégias de negociação algorítmica.


Qualquer estratégia de negociação algorítmica exige uma oportunidade identificada que seja rentável em termos de melhoria de ganhos ou redução de custos. As seguintes são estratégias de negociação comuns usadas em algo-trading:


As estratégias de negociação algorítmicas mais comuns seguem as tendências em médias móveis, fuga de canais, movimentos no nível de preços e indicadores técnicos relacionados. Estas são as estratégias mais fáceis e simples de implementar através de negociação algorítmica porque essas estratégias não envolvem fazer previsões ou previsões de preços. Os negócios são iniciados com base na ocorrência de tendências desejáveis, que são fáceis e direitas de implementar através de algoritmos sem entrar na complexidade da análise preditiva. O exemplo acima mencionado de média móvel de 50 e 200 dias é uma tendência popular seguindo a estratégia. (Para mais informações sobre as estratégias de negociação de tendências, consulte: Estratégias simples para capitalizar as tendências.)


Comprar um estoque cotado duplo a um preço mais baixo em um mercado e simultaneamente vendê-lo a um preço mais alto em outro mercado oferece o diferencial de preço como lucro ou arbitragem sem risco. A mesma operação pode ser replicada para ações versus instrumentos de futuros, pois os diferenciais de preços existem de tempos em tempos. Implementar um algoritmo para identificar esses diferenciais de preços e colocar as ordens permite oportunidades lucrativas de forma eficiente.


Os fundos do índice definiram períodos de reequilíbrio para que suas participações fossem compatíveis com seus respectivos índices de referência. Isso cria oportunidades rentáveis ​​para comerciantes algorítmicos, que capitalizam os negócios esperados que oferecem lucros de 20 a 80 pontos base, dependendo do número de ações no fundo do índice, apenas antes do reequilíbrio do fundo do índice. Essas negociações são iniciadas através de sistemas de negociação algorítmica para execução atempada e melhores preços.


Muitos modelos matemáticos comprovados, como a estratégia de negociação neutra do delta, que permitem a negociação de combinações de opções e sua segurança subjacente, onde os negócios são colocados para compensar deltas positivos e negativos, de modo que o portfólio delta seja mantido em zero.


A estratégia de reversão média baseia-se na ideia de que os preços altos e baixos de um bem são um fenômeno temporário que retorna periodicamente ao seu valor médio. Identificar e definir uma faixa de preço e implementar algoritmos com base em isso permite que os negócios sejam colocados automaticamente quando o preço do recurso entra e sai do seu alcance definido.


A estratégia de preços médios ponderados por volume quebra uma grande ordem e libera pedaços menores determinados dinamicamente da ordem para o mercado usando perfis de volume histórico específicos de estoque. O objetivo é executar a ordem perto do preço médio ponderado do volume (VWAP), beneficiando assim o preço médio.


A estratégia de preço médio ponderado no tempo quebra uma grande ordem e libera dinamicamente determinados pedaços menores da ordem para o mercado usando intervalos de tempo uniformemente divididos entre o início e o fim do tempo. O objetivo é executar a ordem perto do preço médio entre os horários de início e término, minimizando assim o impacto no mercado.


Até que a ordem comercial seja totalmente preenchida, este algoritmo continua enviando ordens parciais, de acordo com o índice de participação definido e de acordo com o volume negociado nos mercados. A "estratégia de etapas" relacionada envia ordens a uma porcentagem definida pelo usuário de volumes de mercado e aumenta ou diminui essa taxa de participação quando o preço da ação atinge os níveis definidos pelo usuário.


A estratégia de falta de implementação visa minimizar o custo de execução de uma ordem através da negociação do mercado em tempo real, economizando assim o custo da ordem e beneficiando do custo de oportunidade da execução atrasada. A estratégia aumentará a taxa de participação direcionada quando o preço das ações se mover de forma favorável e diminuí-lo quando o preço das ações se mover de forma adversa.


Existem algumas classes especiais de algoritmos que tentam identificar "acontecimentos" do outro lado. Esses "algoritmos de sniffing", usados, por exemplo, por um market maker market market têm a inteligência interna para identificar a existência de qualquer algoritmo no lado da compra de uma grande ordem. Essa detecção através de algoritmos ajudará o fabricante de mercado a identificar grandes oportunidades de ordem e permitir que ele se beneficie ao preencher os pedidos a um preço mais alto. Isso às vezes é identificado como front-running de alta tecnologia. (Para obter mais informações sobre negociação de alta freqüência e práticas fraudulentas, consulte: Se você comprar ações on-line, você está envolvido em HFTs.)


Requisitos técnicos para negociação algorítmica.


Implementar o algoritmo usando um programa de computador é a última parte, batida com backtesting. O desafio é transformar a estratégia identificada em um processo informatizado integrado que tenha acesso a uma conta de negociação para fazer pedidos. São necessários os seguintes:


Conhecimento de programação de computador para programar a estratégia de negociação necessária, programadores contratados ou software de negociação pré-fabricado Conectividade de rede e acesso a plataformas de negociação para colocar os pedidos Acesso a feeds de dados de mercado que serão monitorados pelo algoritmo para oportunidades de colocar pedidos A capacidade e infra-estrutura para voltar a testar o sistema uma vez construído, antes de entrar em operação em mercados reais Dados históricos disponíveis para backtesting, dependendo da complexidade das regras implementadas no algoritmo.


Aqui está um exemplo abrangente: o Royal Dutch Shell (RDS) está listado na Amsterdam Stock Exchange (AEX) e London Stock Exchange (LSE). Vamos construir um algoritmo para identificar oportunidades de arbitragem. Aqui estão algumas observações interessantes:


AEX negocia em Euros, enquanto a LSE negocia em libras esterlinas. Devido à diferença horária de uma hora, a AEX abre uma hora antes da LSE, seguido de ambas as trocas comerciais simultaneamente durante as próximas horas e depois de negociar apenas na LSE durante a última hora à medida que o AEX fecha .


Podemos explorar a possibilidade de negociação de arbitragem nas ações da Royal Dutch Shell listadas nesses dois mercados em duas moedas diferentes?


Um programa de computador que pode ler os preços atuais do mercado Os feeds de preços de LSE e AEX A taxa de câmbio para a taxa de câmbio GBP-EUR Capacidade de colocação de pedidos que podem rotear a ordem para a troca correta do recurso Back-testing em feeds históricos de preços.


O programa de computador deve executar o seguinte:


Leia o preço de entrada do estoque RDS de ambas as bolsas Usando as taxas de câmbio disponíveis, converta o preço de uma moeda para outra. Se houver uma discrepância de preço suficientemente grande (descontando os custos de corretagem) levando a uma oportunidade rentável, então coloque a compra ordem em troca de preços mais baixos e ordem de venda em troca de preços mais elevados Se as ordens forem executadas conforme desejado, o lucro de arbitragem seguirá.


Simples e fácil! No entanto, a prática de negociação algorítmica não é simples de manter e executar. Lembre-se, se você pode colocar um comércio gerado por algo, os outros participantes do mercado podem também. Conseqüentemente, os preços flutuam em milissegundos e até mesmo em microssegundos. No exemplo acima, o que acontece se o seu comércio de compras for executado, mas o comércio de vendas não acontece à medida que os preços de venda mudam quando o seu pedido atinge o mercado? Você vai acabar sentado com uma posição aberta, tornando sua estratégia de arbitragem inútil.


Existem riscos e desafios adicionais: por exemplo, riscos de falha do sistema, erros de conectividade de rede, atrasos de tempo entre ordens comerciais e execução e, o mais importante de tudo, algoritmos imperfeitos. O algoritmo mais complexo é o backtesting mais rigoroso antes de ser posto em ação.


The Bottom Line.


A análise quantitativa do desempenho de um algoritmo desempenha um papel importante e deve ser examinada criticamente. É excitante ir pela automação auxiliada por computadores com a noção de ganhar dinheiro sem esforço. Mas é preciso certificar-se de que o sistema está completamente testado e os limites exigidos são definidos. Os comerciantes analíticos devem considerar a aprendizagem de sistemas de programação e construção por conta própria, ter confiança em implementar as estratégias certas de forma infalível. O uso cauteloso eo teste completo de algo-trading podem criar oportunidades rentáveis. (Para mais informações, consulte Como codificar seu próprio robô Algo Trading.)


Design de sistema de comércio algorítmico. Com o acima em mente, existem vários tipos de estratégia para informar o design do seu robô de negociação algorítmica. Estes incluem estratégias que aproveitam (i) notícias macroeconômicas (por exemplo, mudanças na folha de pagamento ou na taxa de juros não agrícolas); (ii) análise fundamental (por exemplo, usando dados de receita ou liberação de ganhos).


Melhor arquitetura para sistema de negociação totalmente automatizado.


Design de sistema de comércio algorítmico. Projeto e implementação de um sistema de negociação algorítmica para a aplicação Sifox. M? Rio Andr? Ferreira Pinto. Disserta ?? o de Mestrado apresenta? Faculdade de ciências da Universidade do Porto em. Ciência de Computadores. Desenhe e im p m e m e n ta tio n de um e lg o rith m tra d in g s y s te m fo r the th.


A negociação automatizada algorítmica ou a negociação algorítmica foi no centro do mundo comercial há mais de uma década. Como resultado, tornou-se um mercado altamente competitivo que é fortemente dependente da tecnologia. Conseqüentemente, a arquitetura básica de sistemas de negociação automatizados que executam estratégias algorítmicas sofreu grandes mudanças ao longo da última década e continua a fazê-lo.


Para as empresas, especialmente aquelas que utilizam sistemas de negociação de alta freqüência, tornou-se uma necessidade de inovar em tecnologia para competir no mundo do comércio algorítmico, tornando assim a comercialização de algoritmos um foco de avanços nas tecnologias de computadores e redes.


Nesta publicação, desmistificaremos a arquitetura por trás dos sistemas de negociação automatizada para nossos leitores. Comparamos a nova arquitetura dos sistemas de negociação automatizados com a arquitetura comercial tradicional e compreendemos alguns dos principais componentes por trás desses sistemas. Qualquer sistema comercial, conceitualmente, não passa de um bloco computacional que interage com a troca em dois fluxos diferentes.


Os dados de mercado que são recebidos geralmente informam o sistema do último livro de pedidos. Pode conter algumas informações adicionais, como o volume negociado até o momento, o último preço e quantidade negociada para um script. No entanto, para tomar uma decisão sobre os dados, o comerciante pode precisar analisar valores antigos ou derivar determinados parâmetros do histórico.


Para atender a isso, um sistema convencional teria um banco de dados histórico para armazenar os dados do mercado e as ferramentas para usar esse banco de dados. A análise também envolveria um estudo das tradições passadas pelo comerciante. Daí, outro banco de dados para armazenar as decisões comerciais também. Por último, mas não menos importante, uma interface GUI para o comerciante visualizar todas essas informações na tela. A arquitetura tradicional não pôde aumentar as necessidades e demandas do comércio automatizado com DMA.


A latência entre a origem do evento para a geração da ordem foi além da dimensão do controle humano e entrou nos reinos de milissegundos e microssegundos. Assim, as ferramentas para lidar com dados do mercado e sua análise precisava se adaptar de acordo.


O gerenciamento de pedidos também precisa ser mais robusto e capaz de lidar com mais pedidos por segundo. Uma vez que o período de tempo é tão pequeno em comparação com o tempo de reação humano, o gerenciamento de riscos também precisa lidar com pedidos em tempo real e de forma completamente automática. Por exemplo, mesmo que o tempo de reação para uma ordem seja de 1 milissegundo, muito comparado às latências que vemos hoje, o sistema ainda é capaz de tomar decisões comerciais em um único segundo.


Isso significa que cada uma dessas decisões comerciais deve passar pela gestão de riscos no mesmo segundo para alcançar a troca. Este é apenas um problema de complexidade. Uma vez que a arquitetura agora envolve lógica automatizada, os comerciantes agora podem ser substituídos por um único sistema de negociação automatizado. Isso adiciona escala ao problema.


Então, cada uma das unidades lógicas gera ordens e essas unidades significam, ordens a cada segundo. Isso significa que a tomada de decisão e a peça de envio de pedidos precisam ser muito mais rápidas do que o receptor de dados de mercado, de modo a combinar a taxa de dados.


Por isso, o nível de infraestrutura que esse módulo exige deve ser muito superior ao de um sistema tradicional discutido na seção anterior.


A camada de aplicação, agora, é pouco mais do que uma interface de usuário para visualizar e fornecer parâmetros para o CEP. O problema da escala também leva a uma situação interessante. Digamos que lógicas diferentes estão sendo executadas em um evento de dados de mercado único, conforme discutido no exemplo anterior. No entanto, pode haver partes comuns de cálculos complexos que precisam ser executados para a maioria das unidades lógicas. Por exemplo, cálculo de gregos para opções.


Se cada lógica funcionasse de forma independente, cada unidade faria o mesmo cálculo grega que iria desnecessariamente usar os recursos do processador. Para otimizar a redundância do cálculo, os cálculos redundantes complexos geralmente são mantidos em um mecanismo de cálculo separado que fornece os gregos como uma entrada para o CEP. Embora a camada de aplicação seja principalmente uma visão, algumas das verificações de risco que agora são operações com problemas de recursos, devido ao problema de escala, podem ser descarregadas para a camada de aplicação, especialmente aquelas que estão relacionadas com sanidade de entradas de usuários, como erros de dedo de gordura.


No entanto, algumas verificações de risco podem ser específicas para certas estratégias e alguns talvez precisem ser feitos em todas as estratégias. Com inovações, as necessidades são necessárias. Uma vez que a nova arquitetura foi capaz de dimensionar para muitas estratégias por servidor, surgiu a necessidade de se conectar a vários destinos a partir de um único servidor. Assim, o gerenciador de pedidos hospedou vários adaptadores para enviar pedidos para vários destinos e receber dados de várias trocas.


Cada adaptador atua como um intérprete entre o protocolo que é entendido pela troca e o protocolo de comunicação dentro do sistema. Intercâmbios múltiplos significam adaptadores múltiplos. No entanto, para adicionar uma nova troca ao sistema, um novo adaptador deve ser projetado e conectado à arquitetura, uma vez que cada troca segue seu protocolo apenas otimizado para recursos fornecidos pela troca. Para evitar esse incômodo de adição de adaptador, os protocolos padrão foram projetados.


Isso não só torna gerenciável conectar-se a diferentes destinos, mas também reduz-se drasticamente ao mercado quando se trata de se conectar a um novo destino. A presença de protocolos padrão facilita a integração com fornecedores de terceiros, também para análises ou feeds de dados de mercado.


Além disso, a simulação torna-se muito fácil, pois receber dados do mercado real e enviar ordens para um simulador é apenas uma questão de usar o protocolo FIX para se conectar a um simulador. O próprio simulador pode ser construído internamente ou adquirido de um fornecedor de terceiros.


Os dados gravados de forma semelhante apenas podem ser reproduzidos com os adaptadores sendo agnósticos para saber se os dados estão sendo recebidos do mercado ao vivo ou de um conjunto de dados gravados. Com os blocos de construção de um sistema de negociação algorítmica no local, as estratégias otimizadas na capacidade de processar enormes quantidades de dados em tempo real e tomar decisões comerciais rápidas.


Mas com o advento de protocolos de comunicação padrão como FIX, a barreira de entrada de tecnologia para configurar uma mesa de negociação algorítmica, tornou-se menor e, portanto, mais competitivo. À medida que os servidores obtiveram mais memória e freqüências de clock mais altas, o foco mudou para reduzir a latência para a tomada de decisões. Ao longo do tempo, reduzir a latência tornou-se uma necessidade por muitas razões, como :. Para saber mais sobre a latência, pegue nosso webinar passado: o problema, no entanto, é que a latência é realmente um termo abrangente que engloba vários atrasos diferentes.


Para quantificar todos eles em um termo genérico, geralmente não faz muito sentido. Embora seja muito fácil de entender, é bastante difícil quantificar. Por isso, torna-se cada vez mais importante como o problema da redução da latência é abordado.


Alta latência em qualquer uma dessas etapas garante uma latência alta durante todo o ciclo. Portanto, a otimização de latência geralmente começa com o primeiro passo neste ciclo que está no nosso controle i.


A coisa mais fácil de fazer aqui seria encurtar a distância até o destino, tanto quanto possível. Colocações são instalações fornecidas por trocas para hospedar o servidor de negociação nas proximidades da troca. O diagrama a seguir ilustra os ganhos que podem ser feitos cortando a distância. Para qualquer tipo de estratégia de alta freqüência envolvendo um único destino, Colocation tornou-se um facto deve. No entanto, as estratégias que envolvem múltiplos destinos precisam de um planejamento cuidadoso.


Vários fatores, como o tempo gasto pelo destino para responder pedidos de pedidos e sua comparação com o tempo de ping entre os dois destinos, devem ser considerados antes de tomar essa decisão.


A decisão também pode depender da natureza da estratégia. A latência da rede geralmente é o primeiro passo na redução da latência geral de um sistema de comércio algorítmico.


No entanto, existem muitos outros locais onde a arquitetura pode ser otimizada. A latência de propagação significa o tempo necessário para enviar os bits ao longo do fio, limitados pela velocidade da luz, é claro. Foram introduzidas várias otimizações para reduzir a latência de propagação além de reduzir a distância física. Por exemplo, o tempo estimado de ida e volta para um cabo comum entre Chicago e Nova York é a rede de propagação, em outubro, as melhorias de latência anunciadas que trouxeram o tempo estimado de ida e volta para a comunicação com microondas foram adotadas ainda mais por empresas como a Tradeworx trazendo o tempo estimado de ida e volta para 8.


Note-se que o mínimo teórico é cerca de 7. As inovações contínuas estão empurrando os limites da ciência e atingindo rapidamente o limite teórico da velocidade da luz. Os últimos desenvolvimentos em comunicação a laser, adotados anteriormente em tecnologias de defesa, afugentaram ainda mais uma latência já diluída por nanosegundos em curtas distâncias. O próximo nível de otimização na arquitetura de um sistema de negociação algorítmico seria no número de lúpulos que um pacote levaria para viajar do ponto A ao ponto B.


Por exemplo, um pacote pode percorrer a mesma distância através de dois caminhos diferentes. Mas pode ter dois saltos no primeiro caminho versus 3 saltos no segundo. Supondo que o atraso de propagação seja o mesmo, os roteadores e switches introduzem sua própria latência e geralmente como uma regra de polegar, mais o lúpulo é a latência adicionada. A latência do processamento de rede também pode ser afetada pelo que chamamos de microbursas. Microbursts são definidos como um aumento súbito da taxa de transferência de dados que pode não afetar necessariamente a taxa média de transferência de dados.


Uma vez que os sistemas de negociação algorítmica são baseados em regras, todos esses sistemas reagirão ao mesmo evento da mesma maneira. Como resultado, muitos sistemas participantes podem enviar ordens que levam a uma onda repentina de transferência de dados entre os participantes e o destino que leva a um microburst.


O diagrama a seguir representa o que é um microburst. A primeira figura mostra uma visão de 1 segundo da taxa de transferência de dados. Podemos ver que a taxa média está bem abaixo da largura de banda disponível de 1Gbps. No entanto, se mergulhar mais profundamente e olhar para a imagem de segundos a vista de 5 milissegundos, vemos que a taxa de transferência aumentou acima da largura de banda disponível várias vezes por segundo. Como resultado, os buffers de pacotes na pilha de rede, tanto nos pontos de extremidade da rede quanto nos roteadores e switches, podem transbordar.


Para evitar isso, normalmente uma largura de banda muito superior à taxa média observada é geralmente alocada para um sistema de comércio algorítmico. Um tamanho de pacote de bytes transmitidos em uma linha T1 1 ,, bps produziria um atraso de serialização de cerca de 8 milissegundos. No entanto, o mesmo pacote de bytes usando um modem bk de 56K levaria milissegundos. Uma linha Ethernet 1G reduziria essa latência para cerca de 11 microssegundos.


A latência de interrupção significa uma latência introduzida por interrupções ao receber os pacotes em um servidor. A latência de interrupção é definida como o tempo decorrido entre quando uma interrupção é gerada quando a fonte da interrupção é atendida.


Quando é gerada uma interrupção? Interrupções são sinais para o processador emitido por hardware ou software, indicando que um evento precisa de atenção imediata. O processador, por sua vez, responde suspendendo sua atividade atual, salvando seu estado e manipulando a interrupção. Sempre que um pacote é recebido no NIC, uma interrupção é enviada para lidar com os bits que foram carregados no buffer de recebimento da NIC.


Sistemas de negociação automatizados para investidores experientes.


Stocks, ETF & # 8217; s, & # 038; Futuros estratégias de negociação algorítmica.


Em um mundo liderado por títulos, com computadores comerciais de alto nível que cuspiam ordens mais rapidamente do que qualquer um poderia responder a um rumor, fato ou novidade, o que é um comerciante ou investidor para fazer?


Invista em uma estratégia sistemática e disciplinada, como nossas Estratégias de Negociação Algoritmicas AlgoTrades. Com base em um intervalo de tempo de rodagem de seis meses, nossos sistemas de negociação algorítmica demonstraram uma forte correlação negativa com o mercado de ações durante as retrocessos e até mesmo os mercados ósseos plurianuais. *** Em outras palavras, durante um determinado período de seis meses, nossa negociação os sistemas tendem a aumentar sua conta de negociação, quando o mercado de ações está em declínio. Construímos nossos algoritmos para capturar tendências em vários mercados, como o índice S & P500, o índice Dax, ações individuais e o índice de volatilidade do evento ele. Usando futuros, trocados fundos negociados (ETFs), ou ações, podemos tirar o máximo proveito dos giros mensais do mercado de ações. Use nosso sistema de negociação algorítmica e você pode ter certeza de que você possui alguns dos melhores sistemas de negociação automatizados que trabalham para você. *

Comments

Popular posts from this blog

Horário de abertura do mercado forex asiático

Construindo sistemas de negociação ganhadores com tradição segunda edição pdf

Melhores sinais forex on-line